Computing Elements of given Index in Totally Complex Cyclic Sextic Fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing all elements of given index in sextic fields with a cubic subfield

There are no general methods for calculating elements of given index in sextic fields. This problem was investigated only in sextic fields having quadratic subfields. In the present paper we give an algorithm to compute all elements of given index in sextic fields containing a cubic subfield. To illustrate the method we give a detailed example in the last section. AMS Classification Codes (2000...

متن کامل

Computing all power integral bases in orders of totally real cyclic sextic number fields

An algorithm is given for determining all power integral bases in orders of totally real cyclic sextic number fields. The orders considered are in most cases the maximal orders of the fields. The corresponding index form equation is reduced to a relative Thue equation of degree 3 over the quadratic subfield and to some inhomogeneous Thue equations of degree 3 over the rationals. At the end of t...

متن کامل

Units in families of totally complex algebraic number fields

Multidimensional continued fraction algorithms associated with GL n (Z K), where Z k is the ring of integers of an imaginary quadratic field K, are introduced and applied to find systems of fundamental units in families of totally complex algebraic number fields of degrees four, six, and eight. 1. Introduction. Let F be an algebraic number field of degree n. There exist exactly n field embeddin...

متن کامل

Computing p-adic L-functions of totally real number fields

We prove new explicit formulas for the p-adic L-functions of totally real number fields and show how these formulas can be used to compute values and representations of p-adic L-functions.

متن کامل

Computing Stark units for totally real cubic fields

A method for computing provably accurate values of partial zeta functions is used to numerically confirm the rank one abelian Stark Conjecture for some totally real cubic fields of discriminant less than 50000. The results of these computations are used to provide explicit Hilbert class fields and some ray class fields for the cubic extensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1995

ISSN: 0747-7171

DOI: 10.1006/jsco.1995.1038